GOSH team reveals the world’s first functional tissue engineered oesophagus

16 Oct 2018, 3:18 p.m.

Researchers have grown the world’s first oesophagus engineered from stem cells and successfully transplanted them into mice, in a pioneering new study led by Great Ormond Street Hospital (GOSH) and the UCL Great Ormond Street Institute of Child Health (ICH).It is hoped this new research could pave the way for clinical trials of lab-grown food pipes for the thousands of children who are born with gut conditions, or who develop them later in life.

In the study, researchers used a rat oesophagus “scaffold” and human gut cells to grow 2cm long engineered tubes of oesophagus. These tubes were implanted into mice and within a week the engineered tissue developed its own blood supply, which is important for a healthy gut that can squeeze down food.

Children who could benefit in the future from further clinical trials include patients like two-year-old Hudson who has oesophageal atresia, a rare condition affecting nearly 250 in the UK each year. The condition results in an incomplete oesophagus, which affects a baby’s ability to feed. Hudson’s mum, Nicola, first became aware of the condition during routine pregnancy screening, when a scan revealed that his abdomen was especially small compared with his identical twin, Hank.

Meet Hudson

Hudson was referred to GOSH where Consultant, Mr Paolo De Coppi, recommended a gastric pull-up, lifting his stomach up towards the chest in order to connect the throat directly to the stomach. As a result of the procedure, Hudson can now enjoy some of the same foods as his twin, but needs continued feeding support.

Nicola said: “There are things that we take for granted, which we don’t even think about doing, like breathing whilst eating. Hudson sometimes struggles to do both at the same time, so he has to eat with care. Explaining to any two-year-old why they have to sit and eat slowly is quite tricky, but his wellbeing and life depend on it.”

Nicola added: “Having the gastric pull-up has helped my son thrive, but this latest research has the potential to change the life of other children with the same condition as Hudson. In a case like Hudson’s an entirely new, functioning foodpipe would without a doubt be a game changer, giving him a sense of normalcy, so that he can enjoy mealtimes and his life as fully and independently as any other child. We’re excited and hopeful to see where this goes.”

"A major step forward for regenerative medicine"

Mr De Coppi, who is co-lead author of the paper, Consultant at GOSH and Head of Stem Cells and Regenerative Medicine at ICH said: “This is a major step forward for regenerative medicine, bringing us ever closer to treatment that goes beyond repairing damaged tissue and offers the possibility of rejection-free organs and tissues for transplant”. The NIHR Research Professor also added: “We’re really excited about these promising preclinical findings. However, lots more research lies ahead before we can safely and effectively translate this approach to humans.

Study co-lead author Dr Paola Bonfanti, who is Senior Research Associate at ICH and Group Leader at The Francis Crick Institute, added: “This is the first time that such a complicated organ has been grown in the lab. Not only is the gut tube shaped, but it also consists of several different layers of cells, which means we had to use a multi-step approach to develop a piece of oesophagus which resembles a normal one. It’s truly a promising step forward for children and even adults with oesophageal conditions.”

Although still in its pre-clinical stage, research into tissue engineering such as this could lead to a new treatment for patients with complex physical conditions. The method avoids the need for a donated organ, which are often in short supply for children, and significantly lowers the risk of organ rejection.

The results were published in Nature Communications.

The study was funded by the UK Stem Cell Foundation, the Cell and Gene Therapy Catapult, the Great Ormond Street Hospital Charity and the Oak Foundation. Additional support was provided by the Rosetrees Trust. The NIHR GOSH Biomedical Research Centre supported the work using human cells. 

Could adapting our sinks combat super bugs?

Discover how a Consultant Microbiologist at GOSH turned an innovative idea into a patented product that could revolutionise infection control in hospitals, schools, and airports – helping to stop superbugs like MRSA.

Fourth Annual NIHR GOSH BRC Image Competition - A Moment of Discovery

The Research and Innovation Communications team at GOSH and the NIHR GOSH Biomedical Research team invite you to enter our Research and Innovation Showcase: A Moment of Discovery.

GOSH pilots AI tool to give clinicians more quality-time with patients

Patients and clinicians at GOSH have been taking part in the first NHS trial of a bespoke healthcare AI assistant, TORTUS, to help increase face-to-face time during appointments.

New hope to prevent blindness in children with rare genetic disease

A new treatment that could prevent blindness in children with the CLN2 type Batten disease has been trialled by Clinicians at GOSH and University College London Great Ormond Street Institute of Child Health (UCL GOS ICH).